Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224749

RESUMO

Hydrogen (H2) generation by electrochemical water splitting is a key technique for sustainable energy applications. Two-dimensional (2D) transition-metal dichalcogenide (MoS2) and silver phosphate (Ag3PO4) possess excellent electrochemical hydrogen evolution reaction (HER) properties when they are combined together as a composite rather than individuals. Reports examining the HER activity by using Ag3PO4, especially, in combination with the 2D layered MoS2 are limited in literature. The weight fraction of MoS2 in Ag3PO4 is optimized for 1, 3, and 5 wt%. The Ag3PO4/1 wt % MoS2 combination exhibits enhanced HER activity with least overpotential of 235 mV among the other samples in the acidic medium. The synergistic effect of optimal nano-scale 2D layered MoS2 structure and Ag3PO4 is essential for creating higher electrochemical active surface area of 217 mF/cm2, and hence this leads to faster reaction kinetics in the HER. This work suggests the advantages of Ag3PO4/1 wt % MoS2 heterogeneous composite catalyst for electrochemical analysis and HER indicating lower resistivity and low Tafel slope value (179 mV/dec) among the prepared catalysts making it a promising candidate for its use in practical energy applications.


Assuntos
Molibdênio , Nanoestruturas , Humanos , Hidrogênio , Cinética , Física
2.
Bioengineered ; 13(4): 8432-8477, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35260028

RESUMO

Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern toward the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration-based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.


Assuntos
Poluentes Ambientais , Metais Pesados , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Biodegradação Ambiental , Humanos , Águas Residuárias , Água
3.
Chemosphere ; 272: 128607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33097236

RESUMO

Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Óxidos/farmacologia , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...